Towards revision of conventional theory and modelling of turbulence in boundary layer flows

S. Zilitinkevich1,2,3, E. Kadantsev1,2

1Finnish Meteorological Institute, Helsinki, Finland
2Institute for Atmospheric and Earth System Research, University of Helsinki, Finland
3Lobachevsky University of Nizhny Novgorod, Russia

Numerical Weather and Climate Modeling: Beginnings, Now, and Vision of the Future
Belgrade | Serbia | 10 September 2018
Conventional vision of **TURBULENCE**

- **Two types** of motion: regular mean flow + chaotic turbulence characterised by direct cascade
- **Energetics** fully defined by the Turbulent Kinetic Energy (TKE) budget equation
- **Turbulent fluxes** = gradients multiplied by exchange coefficients: eddy viscosity, conductivity, diffusivity

Chaos our of order (Kolmogorov, 1941)
CURRENT PARADIGM of theory of turbulence (the forward cascade towards dissipation and the downgradient fluxes) is attributed to Kolmogorov (K-1941-1942); however he limited to shear-generated turbulence in neutrally stratified flows.

His followers extended the paradigm without proof to both:
- **unstable stratification**: buoyancy-generated plumes principally different from shear-generated eddies
- **stable stratification**: believed to “consuming” turbulent kinetic energy (TKE), but in fact converting TKE into turbulent potential energy (TPE)

REVISED PARADIGM takes into account
- **self-organisation** in unstable stratification: inverse cascade of TKE \rightarrow its conversion into KE of self-organised motions
- **self-control** in stable stratification via countergradient heat flux
Stable and Neutral Planetary Boundary Layer (PBL) models overestimate mixing and height of the PBL

This results in essential errors in determining the most important near-surface parameters
Self-control of turbulence in stable stratification via counter-gradient heat flux missed in K-1941, MO-1954

\[F_\theta = C_1 t_T \beta \langle \theta^2 \rangle - C_2 t_T E_z \frac{\partial \Theta}{\partial z} \]

Key feedback assuring self-control (Z et al., 2007, 2013):
An increase in temperature gradient \(\partial \Theta / \partial z \) enhances
(1) total (negative) fluxes of heat \(F_\theta \) and buoyancy \(F_b = \beta F_\theta \),
(2) hence, mean squared temperature \(\langle \theta^2 \rangle = -C_3 t_T F_\theta \frac{\partial \Theta}{\partial z} \)
(3) hence, countergradient positive contribution to heat flux \(C_1 t_T \langle \theta^2 \rangle \)

This compensates for the enhancing of negative heat flux and prevents collapse of turbulence in super-critical stratification
Prandtl no. Pr_T vs. Richardson no. Ri

K-1941, MO-1954 ignore self-control of heat flux, F_θ, and suggest the similar viscosity and conductivity: $Pr_T = K_M / K_H = constant$

This suggests erroneous turbulence cut off at $Ri > Ri_c = 0.25$

Black line: Pr_T after the EFB turbulence closure (Z et al., 2007-2018)

Red line: Pr_T prescribed by conventional theories (e.g. MO-1954)
Stable stability: **strong-mixing** PBL turbulence and **weak-conductivity** turbulence aloft ($Ri > R_i$)

Shallow PBL is seen due to water haze (Bergen). Traditional theory does not distinguish between turbulence in **weakly** stable PBL and **supercritically** stable free flow. The problem is solved by EFB closure (Z et al., 2007-2018).
EFB turbulence closure (Zilitinkevich et al., 2013)

• Budget equations for basic second moments: E_K, E_P, τ_i ($i = 1, 2$) and F_z
• New prognostic equation for TKE dissipation rate ε_T
• Theory covers non-steady turbulence accounting for non-gradient and non-local transports
• Resolves supercritical turbulence and reveals two principal regimes:
 - **Mixing turbulence in boundary layer flows:** $K_M \sim K_H$ at $Ri < Ri_c$
 - **Wave-like turbulence in free atmosphere (FA):** $Pr_T = K_M / K_H \sim 4$ Ri at $Ri > Ri_c$
• Calibration and testing needed
Couette flow – the flow between two parallel plates moving in opposite directions:
- Simple model of shear-driven flow
- Plane geometry, periodic BCs in horizontal directions
- Constant shear stress
- Statistically stationary flow
- Stable stratification

 DNS: Stably stratified Couette flow
Maximal Flux Richardson number

\[Ri_f \equiv \frac{\beta F_z}{\tau \cdot \partial U/\partial z} = \frac{kz / L}{1 + kz / R_\infty L} \]

Flux Richardson number versus \(z/L\), where \(L\) is Obukhov length scale \(L = \frac{\tau^{3/2}}{-\beta F_z}\)

Black solid line – best fit of EFB to DNS data
Steady-state TKE dissipation rate

\[\varepsilon_K = \frac{\tau^{3/2}}{kz} \left[1 + \left(\frac{1}{R_\infty} - 1 \right) \frac{kz}{L} \right] \]

Dimensionless dissipation rate versus \(z/L \)

Theoretical curve (black solid line) is fully consistent with experimental data
Energy Richardson number for any heterogeneous and non-stationary flows

\[\text{Ri}_E \equiv \frac{E_P}{E_K} = \frac{C_p k z / L}{1 + \left(R_\infty^{-1} - 1 \right) k z / L} \]

Energy Richardson number versus \(z/L \)
Black solid line – best fit of EFB to DNS data
Dimensionless velocity and potential temperature gradients as functions of z/L

$$\Phi_M \equiv \frac{kz \, du}{u_* \, dz}$$

$$\Phi_H \equiv \frac{k_Tz \, d\theta}{T_* \, dz}$$

Dimensionless velocity gradient Φ_M and dimensionless potential temperature gradient Φ_H versus z/L

Φ_H increases faster than Φ_M assuring non-constant Pr_T
Truly neutral PBL (Ekman layer)

PBL with height-constant potential temperature formed by pressure gradient in rotating system

Very reliable DNS data from Spalart et. al. (2008)

Two RANS model runs: EFB and MUSC (HARMONIE/AROME weather prediction system)

\[
\frac{(u - u_\infty)}{u^*} \quad \text{z} / \left(\frac{u^*}{f}\right)
\]

\[
\frac{E_K}{u^*^2} \quad \text{z} / \left(\frac{u^*}{f}\right)
\]

Dimensionless profiles of wind velocity components

Dimensionless turbulent kinetic energy

versus dimensionless height

EFB correctly models PBL height
Stably stratified idealized GABLS1 case

Initially 100 m deep vertically homogeneous layer evolves against stable stratification controlled by persistent cooling of the surface. GABLS = GEWEX Atmospheric Boundary-Layer Study (Holtslag, 2003)

EFB is much closer to LES
Conventionally Neutral PBL: mean profiles

Same as GABLS1, but for zero surface heat flux: Initially homogeneous PBL evolves against very stable stratification in the free atmosphere causing the negative (downward) heat flux.

\[\frac{d\Theta}{dz} = 20 \text{ K/km} \] for 20th hour

Traditional theories overestimate PBL height and overwarms PBL.
Concluding remarks

EFB closure shows good agreement with DNS and LES of:
• stably stratified Couette flows
• neutrally stratified PBL
• conventionally neutral PBL
• stably stratified GABLS1

Verification of EFB against DNS and LES shows obvious advantages of EFB compared to currently used closure models

DNS and LES for larger z/L are needed for further validation and inter-comparison
Thank you for your attention

References

Acknowledgements
This work has been supported by the Academy of Finland project ClimEco No. 314 798/799 (2018-2020); Russian Foundation for Basic Research (Project No. 18-05-60299). Post-processing of numerical data from INM were supported by the Russian Foundation for Basic Research (Project No. 16-05-01094 A). Post-processing of numerical data from IAP was supported by the Russian Science Foundation grant No. 15-17-20009. Analysis of data from atmospheric observation was supported from the Russian Science Foundation grant No. 17-17-01210.